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Electrophiles and Acute Toxicity to Fish
by Joop L. M. Hermens*

Effect concentrations in fish LC50 tests with directly acting electrophiles are lower than those of un-
reactive chemicals that act by narcosis. LC50 values of more hydrophobic reactive chemicals tend to
approach those of unreactive chemicals. Quantitative studies to correlate fish LC50 data to physical-
chemical properties indicate that LC. values of reactive chemicals depend on hydrophobicity as well as
chemical reactivity. In this paper, several examples will be given of chemical structures that are known
as direct electrophiles. This classification might be useful to identify chemicals that are more effective at
lower concentrations than unreactive compounds. Chemicals that require bioactivation are not included
because almost no information is available on the influence of bioactivation on acute toxic effects in
aquatic organisms.

Introduction
The toxic effects of electrophiles are based upon their

reaction with nucleophilic sites in biological macromo-
lecules, but these cannot be defined in terms of a single
mechanism ofaction. The major effect following an acute
exposure to a relatively high dose of an electrophile
might be membrane irritancy. More chronic exposure
to lower levels might induce cytotoxic effects related to
the disturbance of various types of processes within and
outside the cell. Many electrophiles have been impli-
cated as genotoxic agents that may act as carcinogens.
Several compounds are direct electrophiles, but for
many chemicals, electrophiles are formed in vivo by
metabolic activation (1). It comes as no surprise that
much attention is directed to possible mutagenic and
carcinogenic effects of electrophiles.
Most information on carcinogenicity, toxicity, and

bioactivation processes has been derived from mammalan
studies or from cellular in vitro systems isolated from
mammals; much less is known about such processes in
fish. It is questionable whether bioactivation is always
important in acute toxicity tests with the aquatic species.
LC50 concentrations of directly acting electrophiles are

generally lower than those of unreactive organic chemi-
cals. In this paper examples will be given of electrophilic
chemical structures/moieties that are known to act as di-
rect electrophiles. This classification might be useful in
identifying chemicals that are very likely effective at
lower concentrations than unreactive compounds.

Intermezzo: Acute LC50 Values of
Unreactive Organic Chemicals to Fish
Many unreactive organic micropollutants simply act

by narcosis in acute toxicity tests with fish. The struc-
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tural requirements, related to narcosis, are discussed
in more detail in the contributions of Veith and Brod-
erius (2) and Franks and Lieb (3). Two classical QSAR
equations are published for the prediction of LCrO values
in fish: one for the guppy [Eq. (1)] and one for the
fathead minnow [Eq. (2)], established by Konemann (4)
and Veith et al. (5), respectively.

log LCro (mole/L) = - 0.87 log K0w - 1.13 (1)
log LC5o (mole/L) = - 0.94 log Ko, + 0.94

log (0.000068 Ko, + 1)
- 1.25 (2)

Narcotic effect concentrations for other species and
endpoints show similar correlations with KO. Data for
subchronic toxicity to fish and Daphnia magna are ana-
lyzed by Call et al. (6) and Hermens (7). Lipnick et al.
(8) calculated correlations for several endpoints includ-
ing fish and mammalian LCrO values, and Roberts (9)
published a QSAR equation for upper respiratory tract
irritation. The influence of Ko, in all these equations
simply reflects differences in absorption of the tested
compounds.
The structural requirements related to this particular

mode of action are rather well defined. Chemicals that
act by narcosis include: saturated aliphatic alcohols, sat-
urated ketones, and chlorinated aliphatic (saturated)
and aromatic hydrocarbons.
Many pollutants cause lethality at much lower con-

centrations than predicted by Eqs. (1) or (2) because
they act through a specific mode of action or because
they may interact directly or indirectly (after bioacti-
vation) with nucleophiles. This paper summarizes those
chemical substructures that possess directly reactive
properties. The survey is restricted to directly reactive
chemicals because little is known of the influence of
bioactivation on acute toxic effects. This classification
of reactive structures might be useful in identifying
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chemicals that are very likely to be more lethal than
unreactive compounds at lower concentrations in acute
toxicity experiments.

Chemically Reactive Substructures
Electrophiles can react with several types of nucleo-

philes. Amino (-NH2), hydroxy (-OH), and sulfhydryl
(-SH) groups are the most important of these from a
biological point of view because they are found in many
biological macromolecules, such as in proteins and in
organic bases in DNA. Electrophiles may react with a
nucleophilic ligand by different mechanisms of reaction
and some of these mechanisms are summarized in Table
1. These mechanisms include nucleophilic displacement
reactions (scheme a), addition at a carbon-oxygen bond
(scheme b) and addition at a carbon-carbon double bond
(scheme c).

Information on directly reactive structures can be
drawn from several sources. Many examples of reactive
chemicals are given in monographs or review papers on
mutagenic and carcinogenic effects of chemicals (10).
Infornation on reactive chemicals is also given in lit-
erature on organic chemistry (11,12), enzyme inhibitors
(13), alkylation agents (14), and sulfhydryl agents (15).
The -SH group is only one example of a nucleophilic
ligand, but it may be a good representative of nucleo-
philes in general. Organic chemicals that can react with
-SH groups are also likely to be reactive towards other
nucleophilic ligands such as -OH and -NH2.
The following survey of reactive electrophilic sub-

structures is arranged first according to the atom or
chemical group that can bind a nucleophile: acylation
reaction, reaction with cyanate, reaction with carbonyl
compounds, alkylation and arylation reactions, reaction
with metal ions and organometallic compounds, and
other miscellaneous reactions with sulfhydryl groups.
Within each ofthese classes, a division into subclasses

can be made according to the specific substructures rep-
resenting the actual reactive site. The notation of chem-
ical structures shown is hydrogen suppressed unless
hydrogen atoms constitute an essential part of the re-
active moiety. In addition, the following abbreviations
are used: C(ar): aromatic carbon atom; Hal: halogen
atom (F, Cl, Br or I); R: H, alkyl group or other arbi-
trary molecular substructure; C(O) : C=O; S(02):
O=S=O; P(O) : P=O. Carbon atoms, but also other
atoms such as nitrogen, might be substituted with hy-
drogen or other arbitrary substructures.

Acylation Reactions
In an acylation reaction the end product is an acylated

nucleophile such as in a reaction between a sulfhydryl
group and acetylchloride in Eq. (3) (15).
R-SH + CH3-C(O)-Cl --

R-S-C(O>-CH3 + HCl
Examples of chemicals that may react with nucleophiles
by acylation (10,15) are given below:
ketenes:
acid halides:
carboxylic

acid anhydrides:

-C=C=O
-C(O)-Hal

C(O)
/ \

Cn 0
\ /
C(O)

(n = 2 or 3)

dialkyl
carbamoylchloride: (C.)2-N--C(O)-Cl

Reaction with Isocyanates
Organic isocyanates, as well as isothiocyanates react

with an -SH group as depicted in Eq. (4) (15):
isocyanate: -N=C=O

isothiocyanate: -N=C=S
RS- + -N=C=O + H20 -

RS-C(O-NH- + OH-

Reaction with Carbonyl Compounds
Chemicals with a carbonyl group such as an aldehyde

react with R-SH (11) as follows:

R-SH + C==O -- R-S-C-OH (5)

Carbonyl groups in aldehydes and lactones are espe-
cially reactive. These are much more reactive than, e.g.,
a C==O group in ketones. Alternatively a reaction with
amino groups can lead to Schiff base fonnation.

0

aldehydes: -C-H

Table 1. Three different mechanisms of reactions of chemicals with nucleophiles.

Addition to carbon-oxygen
Nucleophilic displacement reaction double bond (C = 0)
Nu: + -C -Y---C -Nu + Y: RNH2 + C = 0-R -N = C + H20
Nu: nucleophile, e.g., -NH2, -OH or with, e.g., RNH2 as nucleophile
-SH group in macromolecules

Y leaving group

Addition to activated carbon-carbon
double bond (C = C)

Nu: + A - CH = CH2-* A - CH2 - CH2 - Nu
A: e.g., -NO2, -SO2R, -COR or -COOR

220
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Lactones: (-Cn-C- (n = 1 or 2)

Alkylation and Arylation of SH Groups
The replacement of a hydrogen atom in a molecule by

an alkyl group is termed alkylation. Many different or-
ganic chemicals react with nucleophiles by alkylation.
The carbon atom through which the attachment is made
must be saturated Eq. (6). Therefore, the replacement
of a hydrogen atom, e.g., in a sulfhydryl group, by a
ethyl group is a simple example of an alkylation (14).

R-SH -* R-S-C-C- (6)
Many different types of alkylating agents can be distin-
guished and several examples are given by Fishbein
(10), Ross (14), and Torchinsky (15).
Epoxides and Aziridines. Epoxides and aziridines

are well-known alkylating agents.
0

epoxides: -C----C-
N

aziridines:
(imines)

Sulfonic, Sulfuric, and Phosphoric Acid Esters.
The general structures of sulfonic, sulfuric, and phos-
phoric esters are indicated below (14).

sulfonic acid esters: -C-S(O)2--O----
sulfuric acid esters: --C-O=S0)2- -C-

phosphoric acid esters: --C/-O-P(O )--0C

0-c
Also cyclic sulfonic and sulfuric acid esters are alkyl-
ating agents (10).
cyclic sulfonic acid esters:

S(0)2

0

Cn

cyclic sulfuric acid esters:
S(0)2

/ \
C 0

\ /
Cn

0 (n = 3 or 4)

(n = 1,2or3)

Phosphoric acid esters are well-known insecticides
that act specifically by inhibiting acetylcholinesterase
(AChE). The enzyme AChE is inhibited by phospho-

rylation of a hydroxy group in serine (16,17), but or-
ganophosphates can also react by alkylation. Whether
organophosphates act as alkylating or as phosphoryl-
ating agents is pH dependent (14).
Halogenated Acids, Amides, Ethers, Sulfides, and

Amines. Halogen atoms are more easily substituted
by other nucleophiles in the presence of activating sub-
stituents such as carboxy, amide, ether, sulfide, and
amino groups. Halogenated acetates are acetamides
(15), halogenated ethers, ethyl sulfides, and ethyl
amines (14) are especially reactive to nucleophiles. The
reactive character of propionates is lower because the
activating influence weakens as the distance between
the halogen atom and the activating group increases.
Halogenated ethyl sulphides and amines are also known
as sulfur and nitrogen mustards.

halo acetates: Hal-C-C(O-OH
halo acetamides: Hal-C-C(0-N-

halo ethers: Hal-C ln--0-- (n = 1 or 2)

haloethyl sulfides: Hal-Cl-C-S

haloethyl amines: Hal-C-C-N-

Addition to an Activated Carbon-Carbon Double
Bond (C==C). Nucleophiles can also react by addition
at carbon-carbon double bonds, especially when the
C=C bond is activated by other chemical groups such
as in acrylonitrile, acrylamide, methyl acrylate, vinyl-
sulfones, maleic acid and unsaturated aldehydes. The
general reaction for the addition of a nucleophile to a
C=C bond is given in Table 1. In summary, the follow-
ing structural entities will enhance the reactivity of the
C=C bond (15,12):

amide: --CC-C(0-N-
cyano: -C=C--CN
aldehyde: -C=C--C(0--H
nitro: -C-C--N(0)2
sulfone: -C=-C-S(O)2-
carboxy ester: -C=C--C(O)-O-C-

(acrylates)
carboxy acid: -C-C--C(O)-OH
carbonyl: -C=C-C(O)-
quinone: 0

11
C

C C

C C

C

Alkyl Halides and Aryl Halides. Alkylhalides and
arylhalides can react with many different nucleophiles
by substitution of the halogen atom [Eq. (7)].
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alkyl halide: -C-Hal
aryl halide: C6Hg-Hal

R-SH + -C-Hal -) R-S-C- + H-Hal (7)
The tendency of halogens in alkyl halides and aryl

halides to be substituted by another nucleophile de-
pends strongly on the presence of other substructures.
Activation of the C-Hal bond is based on inductive
effects (electron-withdrawing or donation) and meso-
meric or resonance effects (electron redistribution).
More details on the effects of these factors on chemical
reactivity are given in general text books on organic
chemistry (11,12).
ALKYL HALIDES AND ARYL HALIDES WITH ONLY C,

H, AND HAL. Saturated alkyl halides are generally
not very reactive towards nucleophiles and LC50 values
of such chemicals are well predicted by QSAR equations
for unreactive chemicals (4,5). In general, the reactivity
of saturated alkyl halides increases as follows:
halogen atom: I > Br > Cl > F
and

C C

alkyl chain: C-C-Hal > C-C-Hal >

C
C-C-Hal > -C-Hal

Methyl bromide is much more reactive than methyl chlo-
ride, and isopropyl bromide is a much more directly
reactive agent than methyl bromide. The difficulty is in
deciding which combination is directly reactive with nu-
cleophilic groups in biological macromolecules. Unsat-
urated alkyl halides have a much higher tendency to
react with nucleophiles than saturated alkyl halides.
The position of the halogen atom in an unsaturated alkyl
halide, however, strongly affects its reactive character.
Halides, in which the halogen is directly attached to one
ofthe unsaturated carbon atoms such as in vinyl chloride
(C=C-Hal) are unreactive, while allyl halides
(C=C-C-Hal) are very reactive. Also, benzyl halides
(C6H5-CH2-Hal) are much more reactive than halo-
genated benzenes.

Therefore, the presence of the following substruc-
tures strongly increase the reactivity of alkyl halides or
aryl halides:

allylic group: -C==C-C-Hal
benzylic group: C(ar)-C-Hal

ALKYL HALIDES AND ARYL HALIDES WITH OTHER
SUBSTITUENTS. In the section "Halogenated Acids,
Amides, Ethers, Sulfides, and Amines," several ex-
amples were shown of possible activating influences of
certain substituents on the reactivity of the aliphatic
C-Hal bonds. Halogens attached directly to an aro-
matic carbon atom are usually unreactive. Nitro groups,
however, especially in the 2 and 4 position, strongly
enhance the tendency for halogens to be substituted.

halogenated nitroaromatics:
Hal

C

C C-NO2
11

C C

C
I
NO2

Reaction with Diazo Compounds. Sulfhydryl
groups react with diazo compounds as shown in Eq. (8)
(15):

diazo compounds: -C-N=N
RS- + -C-N=N-* RS-C- + N2 (8)

Organo Metallic Compounds
Metal ions of Cu, Ag, Au, Zn, Cd, Hg, Sn, Pb, As,

and Sb show a high affinity for sulfhydryl groups and
according to Torchinsky (15) can react as follows:

R-SH + M+ -- R-S-M + H+ (9)
Also, organic compounds derived from these elements
may react with SH groups. The number of organic
groups, attached to the central metal atom, will depend
on the valence state of the metal. Examples of well-
known organo metallics include organo mercury, organo
lead, and organo tin compounds.

(R{C)n M+

Related structures, but those not derived from metal
ions, are alkylating ammonium and sulfonium com-
pounds (14). The reactivity of such compounds

ammonium compounds: --C-N--C
sulfonium compounds: -C-S--C

depends on the basicity of the heteroatom and on the
nature of the alkyl group. In a unimolecular process the
more substituted alkyl groups will tend to be displaced,
while in a bimolecular mechanism a nucleophile will at-
tack at a less substituted group (14).

Other Miscellaneous Reactions with
Sulfhydryl Groups
The oxidation of sulfhydryl groups in thiols can pro-

duce disulfides or sulfonic acids. Mild oxidizing agents
will produce disulfides, while strong oxidizing agents
result in the formation of sulfonic acids Eq. (10) (15):

oxidizing agent

2 (R-SH) > R-S-S-R or
R-SO3H (10)
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Torchinsky (15) gives the following examples of -SH
agents:

iodine: I2
hydrogen peroxide: H202

sulfoxides: -S(O)-
sulfenyl iodides: R-S-I

A separate class of sulfhydryl reagents are disulfides
since their reactions with thiols are absolutely specific.
Torchinsky (15) summarizes several specific examples,
and the general structures derived from these examples
are given below:

disulfides: -S-R
sulfoxides of aliphatic disulfides: -S-S(O)-

thiosulfonates: -S-S(O)2-
carboxy disulfides: -C(O)2-S-S-

Further, Torchinsky (15) mentions trivalent arsenic
compounds such as arsenoxides, thiocyanates, and sul-
fenyl halides as possible reagents that act with sulfhy-
dryl groups as indicated in Eqs. (11)-(13).

arsenic compounds: O=As-R
thiocyanates: -S-CN

sulfenyl halides: Hal-S-
OH

(11)
R-SH + O=As-R1R-- R-As-SR

R-SH + R1-S-CN R-S-CN + R1 S- (12)
R-SH + Hal-S-R1 R-S-S--R1 + HCl (13)

Reactive Intermediates and Acute
Toxicity
The mutagenic or carcinogen activity of many chem-

icals is based on reactive intermediates forned by met-
abolic activation. Examples of chemicals that may be
metabolized to reactive intermediates are summarized
in Table 2. Although the role of reactive intermediates
in carcinogenicity is quite evident, the influence ofbioac-

Table 2. Examples of classes of chemicals known to undergo
bioactivation.a

Alkanes Arylamines and arylamides
Alkenes and alkynes Arylhydroxylamines and
Benzene and substituted arylhydroxamic acids
benzenes Nitrosoamines

Polycyclic aromatic Hydrazines
hydrocarbons Nitroimidazoles

Furans Nitriles
Phenols, catechols, and quinones Thiono-sulfur compounds
Halogenated alkanes
Halogenated alkenes and alkynes
aExamples discussed by Anders (1).

tivation on acute toxic effects is unclear. Aromatic
amines, for example, can form reactive intermediates
(18), but Veith and Broderius (19) have shown that ef-
fects of several aromatic amines in LC50 tests with fish
are very similar to those produced by narcotics. Also
the mutagenic effect of chlorinated alkanes and alkenes
is based on reactive intermediates such as epoxides
(20,21) and conjugates with glutathione (22). LC50 val-
ues of several chlorinated alkanes and alkenes to fish,
however, are well-predicted by QSAR equations de-
rived for chemicals that act by narcosis (Table 3). Other
examples, however, suggest that bioactivation may also
be important in acute toxicity tests. LC50 values of ni-
troaromatics, for example, correlate very well with
their tendency to be reduced (23). The low LC50 values
of dinitroaromatics, in particular, may be related to
their high tendency for reduction (Table 3). Also, the
high toxicity of unsaturated alcohols, as indicated in
Table 3, is considered to be related to activation to a,
,B-unsaturated aldehydes and ketones (24,25). In gen-
eral, however, little is known of the possible role of
bioactivation in acute toxicity tests with fish. The in-
formation, available from mammalian studies, cannot
be simply translated to LC50 tests with aquatic species.

Some Quantitative Correlations for
Fish LC50 of Reactive Chemicals

It is well known that reactive chemicals are lethal at
lower concentrations than unreactive compounds with
equal K., values. The LC50 data for several classes of
reactive electrophilic chemicals have been analyzed by
QSAR and the derived equations are presented in Table
4. LC50 data ofa series ofreactive alkyl halides correlate
much better with rate constants (k) of a reaction with
4-nitrobenzyl pyridine (4-NBP) than with Ko, (26).
Reactivity towards 4-NBP has also been applied in cor-
relations between mutagenicity and alkylating potency

Table 3. Comparison of observed LCm values with predictions
(LC.o min) based on QSAR equations for unreactive chemicals

that act by narcosis.

Chemical
Chloroalkanes and alkenes (4)

1,2-Dichloroethane
1,2-Dichloropropane
1,3-Dichloropropane
1,1,2-Trichloroethane
Trichloroethylene

Nitroaromatics (25)
Nitrobenzene
2-Chloronitrobenzene
2-Nitrotoluene
1,2-Dinitrobenzene
1,4-Dinitrobenzene

Unsaturated alcohols (23)
3-Butyn-2-ol
1-Heptyn-2-ol
3-Butyn-1-ol
4-Pentyn-2-ol

LC50 min / LC50 observed

2.1
0.9
3.3
0.9
2.1

3.3
4.2
3.0
500
1666

383
134
321
160
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Table 4. Quantitative correlations for LC50 values with fish of
some classes of reactive chemicals.a

Chemical class Log 1/LCo (mole/L) n r2 Reference
Reactive

alkylhalides 0.47 log Kow + 4.0 15 0.17 (26)
- 1.3 log (1604 + knbp')
+ 10.4 15 0.88

Epoxides 0.18 log K0 + 4.0 12 0.18 (29)
1.6 log knbp + 4.3 12 0.26
0.39 log Ko, + 3.0 log knbp
+ 3.8 12 0.89

Aldehydes 0.36 log K0w + 3.5 14 0.85 (31)
0.36 log K., - 0.08 log kcyst
+ 3.7 14 0.88

aAbbreviations: Kow = octanol-water partition coefficient; K&bp =
first-order reaction rate constants of a reaction with 4-nitroben-
zylpyridine; k,yt = second order rate constants of a reaction with
cysteine; n = number of chemicals in dataset; r2 = correlation
coefficient.

of several classes of organic chemicals (27,28). Deneer
et al. (29) recently derived an epoxide QSAR equation
relating fish LC50 data to Kow and the rate constants
for reactivity to 4-NBP. It is obvious that neither of the
equations using a single descriptor led to satisfactory
correlations but that only an equation employing both
descriptors yields a highly significant correlation. Most
of the epoxides are lethal at much lower concentrations
than chemicals that act by narcosis. Lipnick et al. (30)
who compared LC50 values of six epoxides with LC50
values calculated with a QSAR for narcosis type chem-
icals observed similar effects. LC50 data for aldehydes
showed a high correlation with K0w and the introduction
of a reactivity descriptor did not improve the correlation
(31).The observation that Kow alone is a good descriptor
might indicate, as suggested by Deneer, that "possibly
the rate of uptake of the compounds is the rate limiting
process in the case of the compounds studied" (31). An
example of a QSAR study for chemicals that probably
are activated to reactive intermediates is given by Lip-
nick et al. (24). They observed that the toxicities of
allylic and propargylic alcohols are much lower than
those calculated from a QSAR equation for narcosis-
type chemicals. It was proposed that the allylic and
propargylic alcohols are activated to the corresponding
aldehydes and ketones that can react with nucleophiles
by addition at the conjugated carbon-carbon double or
triple bond.

Thus, it has been demonstrated that, in general, the
LC50 values of electrophilic chemicals such as alkyl hal-
ides, epoxides, aldehydes, and unsaturated alcohols are
lower than the LC50 values of corresponding unreactive
chemicals. Further, it is obvious that to obtain signifi-
cant correlations for these reactive chemicals, it is nec-
essary to include descriptors related to their electro-
philic reactivity.
An interesting aspect of the QSAR equations for al-

dehydes and epoxides is the fact that observed LC50
values tend to approach LC50 values of chemicals that
act by narcosis as Kow increases (29,31). Similar effects

are also observed with esters (32), epoxides (30), and
unsaturated alcohols (24,25). It seems as if the effects
of more hydrophobic reactive chemicals are associated
with narcosis. This phenomenon might be related to
differences in distribution, with more hydrophobic
chemicals partioning into lipid phases such as mem-
branes.
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